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ON THE STABILITY OF SYSTEK HITH NON-R~AIN~~~ CONSTR~INTS~ 

A.P. IVANOV 

The possibility of extending some of the well-known statements on the 
stability of the position of equilibrium and of periodic solutions of 
Hamiltonian systems to systems with ideal non-retaining constraints is 
pointed out. The problem of equilibrium stability and of periodic jumps 
of a plane disc moving in a vertical plane above a straight line is' 
considered as an example. 

Methods of investigation have been developed which are based on a study of the general 
properties of motion derived from the behaviour of the system in a finite time interval (see, 

e.g., /2/l. However this presents difficulties in drawing conclusions about such qualitative 
properties of motion as its stability. A method was proposed in /3/ for obtaining the equa- 
tions of motion for a system with non-retaining constraints in an arbitrary time interval. 
It was shown in /4/ that such equations can be expressed in canonical form. These investiga- 

tions enabled us to extend some of the methods of the theory of stability to systems with non- 
retaining constraints, and this represents the content of the present paper. 

1. Considex a mechanical system in Lagrangian coordinates q = (c&, .._, q,,) restrained 
by v < n non-retaining constraints fk(q)> 0 (k = 1,. ..,n). In the intervals between impacts 
on constraints, the motion of such systems takes place in accordance with the generalprinciples 
of mechanics /l/. 

We will assume that the coefficients of restitution when there are impacts on the con- 
straints are equal to unity and the Lagrangian function L of system M has the form 

(a=l, . . . I v) 

where i7,aij are analytic in a certain region D of coordinate space Rn. 
Point A = q"ED is assumed to be the equilibrium position of system lul. We divide the 

non-retaining constraints into three groups as follows: 1) the constraints qz7 . . . . qr, at point 
A are stressed - qrL = 0 and their reactions are non-zero, 2) constraints q,.,+*, ....qv,+v, are 
stressed, but their reactions are zero , and 3) the constraints ql.,+,.,+lr...,q,, are weakened at 
the point A. An example of such constraints is the equilibrium of a heavy homogeneous sphere 
on a horizontal plane touching one vertical plane, but at some distance from the other. 

By the principle of virtual displacements fox systems with non-retaining constraints /l/, 
the inequality n 

is satisfied in the equilibrium position. 
Assuming that 69, is non-negative for t = 1, . . . . v1 -i- vp and can take arbitrary values 

for i = v1 + vz + 1, . . ., n, while 8u/aq, is proportional to the reaction of the constraint /l/, 
we obtain that ~~/~q~ <O when i = 1, e..rvl, and ~~~~q~ = 0 when i = v1 -I- i, . . ..n. The 
following theorem is a direct extension of the Lagrange-Dirichlet theorem to systems with non- 
retaining constraints. 

Theorem 1. ff the function U (q*), where q* = (0, . . ., 0, 1 qv,+J, . . ., 1 qv,+v. I, qv,r;tfil, , . . , q,,), 

has a strict maximum at the point A = q” = (0, . . ., 0, q&.,+,, . . ., qnc), the position of equilib- 
rium is Lyapunov stable. 

Proof. With the assumptions made about the properties of constraints the system has an 
energy integral E = T - u. We shall show that it is positive definite. To do so it is 
sufficient to ascertain that, when the conditions of the theorem axe satisfied, the function 
u(q) has a strict maximum at the point A in the region qt2_‘O(i = I,...,v). This statement 
follows from the fact that the quantity 
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is negative, when q+q". Hence the function E satisfies the conditions of the Lyapunov 
theorem on stability. The theorem is proved. 

Let us establish the necessary conditions of stability, when v,=l,v, = 0. For this we 
consider besides the system M, the ancilliary systemdfi with n -1 degrees of freedom and the 
Lagrangian function L, = L(0, qn, . . ., &I, 0, qp’, . . ., 9,‘). 

Theoraa 2. If the equilibrium position AI = (ql”, . .., q,,‘) of system.l1,is unstable, the 
equilibrium position A = (O,q,“,..., g,O)ofsystemNis also unstable. 

Proof. Let us change the variables in system M, using formulas (1.2). We obtain 

s=co(Q)v (P=(w...~ (~nb Q=(Qu...T Qn) 

where 'pl = Q1 and the function Cpj represents the solution of the Cauchy problem 

n 

c a,, (cp) 
‘Vi 
d(ZI=-alj(~)* (rjIQ,ao=fjj (j=3, . , If) 

i-s? 

In new variables the Lagrangian function (1.1) does not contain the products Q,'Qk' (k = 
2,.... n) /4/. The equations of motion take the form 

-+o (k-_-2, . . . . n) 
h 

where F, = 0 when qI#O, and when q1 = qI’ = 0 the function F, is defined so that the generalized 
acceleration qI” is transformed into a possible one; it canbe shownthat F, = mar (0, -8Lidq,). 
The second group of equations (1.4) does not contain ql”. 

Since aulaq,IA < 0, a neighbourhood V of a point of the phase space (A,O) can be found 
at which i)Llaq, < 0. In the V region the first of equations (1.4) can be satisfied by setting 
q1 3 0. Then the second group of these equations represent the equations of motion of system 
ill,, and the trajectories of that system in region V are simultaneously the trajectories of 
system Mlfor which q1 = 0, from which the theorem follows. 

Corollary. Let us represent the function u(q) in the neighbourhood of the point A = q” 
in the form of the series 

U = Rql + U, + U,,,+, + . . ., m > 2 (1.5) 

where U, is a homogeneous polynomial of power m of (q -9’) and R = 8U13q,IA<0. If for q1 = 0 
the function is negatively defined (may take positive values), then the equilibrium position 
of A is Lyapunov stable (UnStable). 

The statement about instability is based here n the results obtained in /6/. 

2. Let us now investigate the stability of periodic motions of system (1.1) consisting 
of sections on which the constraints gi > 0 (i = 1, . . . . v) are weakened and impacts on the 
constraint are q1 20. Motions of this kind were considered in the theory of vibro-impact 
systems /2/. The basic technical difficulty in investigating such systems is that due to 
impact interaction the generalized velocities are discontinuous functions of time, and in the 
conventional definition the perturbed motion is determined by equations whose right sides are 
discontinuous functions of the perturbations /5/ (see /3/). The possibility of regularizing 
the equations of perturbed motion, when introducing the canonical formalism into (1.1) , is 
shown in /4/. The general procedure for obtaining the perturbed motion in the form of an 
analytic function of perturbations for solving this type of Hamiltonian is shown below. 

Using the replacement (1.2), we select the generalized coordinates so as to obtain in 
(1.1) alh z 0 (k = 2, . . ., n), and we determine the motion of system M using the ancilliary system 
.M*whichqisq5ree 

qz, . . . . n1 
of the constraint q1 2’0 and has the Lagrangian funct:n L* (q, q*) = L (1 qll, 

. For the trajectories q (t) and q* (t) of systems M andM thefollowing rela- 
tions are satisfied /4/: 

41 (t) = 1 ql* (t) It qi (4 = Qi* (t) (I = 23 . . .* n, 

which enables us to establish the equivalence of systems M and.If* fromthepoint of view of 
the stability of their partial solutions. 

Setting 
dI,* 

PkEdg7 
h 

ff= -$qi.pk-L‘L’ 
k-1 

we write the equations of motion of system AI*inthecanonical form 
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(2.1) 

Since the Hamiltonian function H does not depend explicitly on time, it represents the 
integral of motion in the sense of the total mechanical energy E. Let us assume that for E 
taken from some interval containing the point E,, system (2.1) has a particular solutions of 

the form 
q1 = q; 0, E), p1 = PJ !', E), qr i- q;, ph. = p: 
(k = 2, ~ . .( n) 

(2.2) 

where the functions OP, PT are solutions of the system 

qz’ = E, PI’ = - g , II’= H (41, qpo, . . . . q,,‘, p,, ppo, . . . . p,“) 

which is t periodic of period r(E). We denote the zeros of the function qi(l,E) in a period 

by tl (E) Q t, (E) d . . - <t,(E)=t,(E)+z(E). We assume that the following relations are satisfied: 

We change in system (2.3) to "action-angle" variables, using the formulas 

q1=Q(w* z)=ql”(+(S).S), p1=P(w, z)=p,“(+(+ S) (2.5) 

where qF,py were defined in (2.2) and d = s(Z) is the solution of the differential equation 

ds 2% 
dlSr(s)’ s (10) = Eo 

The Change (2.5) is canonical and periodic in w of period 2n. 
When E = E,. the solution of (2.2) takes the form 

z=zo, w=wo+ $j tl qk = !?k'* ph. = pk’ (k = 2, . . . , n) 

Let us consider the problem of the stability of solution (2.6) with respect to perturba- 
tions of the variables qk, Pk (k = 2, . . ., n) and the action variable I. * 

Since by (2.4) the disposition of the zeros of the function Q(w, I), as defined in (2.51, 
is independent of I, the relations 

Q (w,, 4 = Q (w, Zo).F h 0, F (w 4 > 0 (2.7) 

holds and the quantity Iqol in the expression for the Hamiltonian H is by virtue of the 
change (2.5) an analytic function of Z when Z = I,. The presence of impact interaction in 
the motion leads only to lack of smoothness with respect to the variable w. This does not, 
however, prevent its application to the solution of the above problem of the stability of 
algorithms of the analytic theory of perturbations (see /7, 8/). 

3. An example, we shall consider the motion of a heavy plane disc in the upper half of 
some vertical plane. Let OXY and O'X'Y'be systems of coordinates in the plane of motion 
and attached to the disc, respectively; the OX axis coincides with the straight line bounding 
the motion of the disc, OY is a vertical line, and O'is at the disc centre of mass. The 
curvilinear boundary of the disc may be specified by the analytic function f(a)whosevalueis 
equal to the distance from the point O'to the tangent to that curve which makes an angle a 
with the O’X’ axis. 

As the Lagrangian coordinates we take q1 = y-f(a), q. = a, where z, y are the coord- 
inatesofpoint O'inthe system OXY and a is the angle between OX and O'X'. The Lagrangian 
function has the form 

L=T+U,T= $l[ql’ -I f’ (5%) 41’1* + et.*1 + $ c7sav U = - mg [q, + f (qo)J 

where m and J are, respectively, 
O', 

the mass of disc and its moment of inertia about the point 
and g is the free fall acceleration. 
Note that the variable & is cyclic, and in the Lagrange equations this variable is 

separated from ql, q2. Hence the coordinate q9 = z is a linear function of time, which is 
a corollary of the fact that the horizontal components of the force of gravity and the impact 
forces are zero. Below we shall investigate the behaviour of the variables ql, q,. 

In the coordinate space qIr q2 
positions, when f' (a) = 0. 

the points q1 = O,q* = a correspond to the equilibrium 
If the disc is not a circlewith the centre of gravity at its 

geometric centre, then because of the assumption made about the analyticity of f(a), these 
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positions are isolated. 
On the assumptions made in Sect.1, it is necessary and sufficient for the stability of 

these equilibrium positions that the point a be the minimum of the function f(a). 
The equilibrium positions are points that generate sets of periodic motions which are 

jumps with a constant value of the coordinate q2 equal to a. To investigate the stability of 
such solutions we apply the procedure described in Sect.2. 

Since in the Lagrangian function (3.1) the coefficient of q1’,q2’ is non-zero, to obtain 
the canonical form of the equations of motion it is necessary to use the reducing change of 
variables (1.2) which has here the form q1 = &, qz = cp (Q1, Qz), where the function 'p is the 
solution of the Cauchy problem 

+=-G((p), 'plQ,=3=(22r G=+ 

The Lagrangian (3.1) in the ,new variables has the form 

The equations of motion of the ancilliary systemM* havethecanonical form (2.1) with a 
Hamiltonian function of the form 

(3.3) 

The periodic motions of the disc mentioned above correspond to particular solutions of 
system (2.11, (3.3) of the form 

Ql=+[2(-$y-gltj], &=a, P,=(2Em)'l~-lItlmg, (3.4) 

Pe=O 

-+<<<+, t=$(Gi" 

where r is the period of the motion considered, (i.e. the time interval between the k-th 
and the (k + 2)-th impacts, k = 1, 2, . ..). and E is the energy constant. Formulas (2.5) of 

passing to "action-angle" variables takes the form 

- n,<w<n 

The change is periodic in w of period 2n. 
Solutions (3.4) become 

z = IO, w=ww,$~ q- (s Zo)-“‘t. Qe=a, Pt=O 

(3.5) 

We define the perturbed motion in variables g, n, r which are defined as follows: 

% = Qn - a, q = P,, r = Z - I, 

and represent the Hamiltonian (3.3) and the function I# in the form of power series 
H = H, + . ..+ H, + . . . 

H, = h,,,r + H,", H," = h,,,%' + h,,,$ 

H, = 2 II, p, p(~)%+pro4 h(w + 2n)= h(w) 
'Tp-!-pmn, 

ho= 2 Lg m'" (=)W I + qi PI2 , &)= _& 1 
/l ooo=q(*)lir, E”=&[q.gI,]“’ 
9 = a + % (9,") 5 f h (91") %' + . . . 

(3.6) 

(3.7) 

(3.8) 

The function $k in formula (3.8) may be determined by expanding G ($) in series in 

powers of (I# - a), and substituting (3.8) into (3.2). We successively obtain 

(3.9) 

etc, where Q," is defined by (3.5) when I = I,, in which case QI" = QI. 
According to the general method of reduction to normal form /g/, we consider first the 

linear system with the Hamiltonian Hz' and the idependent variable W. To construct the 



fundamental matrix 
The quantity 

law (linear, since 
ables q2 and E are 

of solutions X(I) we may use the following fairly simple reasoning. 
qi x a in the intervals between impacts varies according to the well-known 
the moment of the force of gravity about the point Q'is zero). The vari- 

connnected by the relation q2 = a + qpl (Q1')5 + 0 (E2, r). From this we can 

determine the solution for 5, ~1 in the interval between impaCt5. Since the variable n = P, 
remains continuous on impact /lo/, that solution is uninterruptedly continued during the 
impact, and the need to apply the method of adjustment is eliminated. 

Calculations of X (w) in the interval IO, nl yield the expression 
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X (W) = IZ*j 1 (i, j = 1, Z), 511 = (1 + X”?l-)i$, (3.10) 

zIz = G/(Jql), z2, = Jql lx0 - x (1 + x&l, 512 = $1 (1 - ~2) 

z= $(zy”“; x=x(u.)=-xyP,c(lI’), x0=x(O) 

where P,” is determined using (3.5) when I == I, and $,is given by (3.9). 
Noting that the coefficients of the function H2” are n-periodic functions of w, we can 

write the characteristic equation in the form 

det~~X(.?)-ppE,~~=p*-(2-~k)pfl=O, k=+“(a) 

and h is the height of jump in the periodic motion. Solving this equation we obtain the 
necessary condition of stability 

0 < k < l/z (3.11) 

and determine the multipliers ~1.2 = exp (*nib). 
Note that the quantity f”(a) represents the difference between the radius of curvature 

of the disc at the point with q2 = a and the distance of that point from the point 0’. When 
the disc is an inhomogeneous circle of radius R, in which the distance between the geometric 
centre and the centre of gravity is E, condition (3.11) means that in periodic motion the 
centre of mass is below the geometric centre, and mJ-‘he<‘/,. In the case of a homogeneous 

disc in the form of an ellipse with semiaxes a,>a,, condition (3.11) means that the impacts 
occur along the ap axis and k < az (a," i a,')/[8 (al' - ara)l. 

We shall investigate the stability in a non-linear formulation by analysing the forms 
Ha, H, in the expansion (3.7). 

When k==is the characteristic index h is related to the frequency of periodic motion 
o = 2 by the third-order resonance relation 3h = o. The calculations show that,if f"(n)# 0, 
the periodic motion is unstable. 

For the remaining values of k from the interval (0, I/,) the question of stability depends 
on the parameters 

xI=(;,'"#!$, x&m 

when k = l/.,(there is no fourth-order resonance 4h = o) and the normal form is non-degenerate, 
in general we have stability of the motion considered. 

The calculation carried out for an inhomogeneous disc and for a homogeneous ellipse 
(x1 = U) show that in these cases solutions (3.4) are stable for all values of k from the 

interval (0, Ii,). 

4. Let us now turn to the more general case when the Lagrangian function has the form 

L’ = T’ + U’, T’ = T, + T, + T,, U’ = U’ (q), qi > 0 (4.1) 

(i = 1, . . .( Y) 
where the coefficients of the form Ti (i = 0, 1,2) are independent of time. 

Since system (4.1) admits of the energy integral E = T, - T0 - u’, for the stability of 
its equilibrium position it is sufficient that the conditions of Theorem 1 for the function 
U = T, + U’ be satisfied. Theorem 2 also remains valid. The corollary of that theorem in 
the form given above is generally incorrect, since the reduced system &f,in the conditions 
indicated may Prove to be stable owing to the gyroscopic forces generated by T,. 

To derive the equations of motion of system (4.1) when v = 1 we shall take advantage of 
the Property of the dynamic equivalence of that system to system M of the form (1.1) with 
n=k+l and can be obtained from it by ignoring the cyclic coordinate q,,/ll/. We apply to 
system M a reducing change, 
n - 1). 

using formulas (1.2) in which 'pi are independent of Q,, (i = 2, . . . . 
Since the coefficients aij are independent of q,,, 

(1.3) exists, and q,, = c+Y,, = Q, + F (Q1, 
such a solution of the Cauchyproblem 

into 
. . . . Q,,-I). Substituting the functions rp, 9" for q, q’ 

(1-l) t we obtain an expression for the Lagrangian function in terms of new variables in 
which the products Q,‘Qi’ ‘(i = 2, . .., n) have vanished and the variable Q,, is cyclic. 
as in Sect.2 to the ancilliary system M*, 

Passing 
using in the Lagrangian the substitution Q,-1911 
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and, then, eliminating the variable Q,,, we can finally obtain the equations of motion of 
system (4.1) in thefrom (2.1). 

1. 
2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 

The author thanks A.P. Markeev for his interest and for useful discussions. 
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THE APPLICATION OF ASYMPTOTIC METHODS TO CERTAIN STOCHASTIC PROBLEMS 
OF THE DYNAMICS OF VIBROPERCUSSIVE SYSTEMS* 

A.S. KOVALHVA 

Translated by J.J.D. 

Motion of certain vibropercussive systems acted upon by a random, non-white 
noise perturbation is studied, using the limit theorems of the convergence 
of the solutions of stochastic differential equations to a diffusion 
process. The results, first obtained in /l, 2/ for smooth systems, are 
generalizedtoinclude systems with discontinuous and impulsive right-hand 
sides /3-5/ by approximating the discontinuous functions by a converging 
sequence of smooth functions. An analogous approach is described for 
vibropercussive systems, and regions of stability of the perturbed motion 
are constructed. 

Analytic expressions describing the probability density and disper- 
sions of velocity and coordinates are well known /6, 7/ in the case of 
linear systems excited by white noise, under elastic impact. The method 
of non-smooth transformations /8/ is used for more complex systems to 
construct the FPK equations characterizing the distribution of the energy 
of the oscillations /9, lo/. Basic results are also obtained for systems 
excited by white noise. 

1. Consider a quasiconservative, vibropercussive system. The equation of motion and 

condition of impact against a one-sided stop have the form 

2" f R*z = sg (t, 5, 2', e) (1.1) 

z = A, x+* = -Rz_‘, R = 1 - &, r = const = 0 (1) (1.2) 

Here A is the size of the gap (A >O) or displacement (A(O), z_' and 3,' denote the 

velocities before and after the impact and E is a small parameter. The piecewise-continuous 

function g characterizes the additional non-conservative terms and represents, for fixed 2 
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